Development and Regeneration

Bachmann Ruxandra

test1

 

Dr. med. Ruxandra Bachmann-Gagescu
Institute for Molecular Life Sciences, University of Zurich
ruxandra.bachmann@imls.uzh.ch

Research Focus: Our research focuses on a group of human Mendelian disorders called ciliopathies which are unified by shared genetic causes resulting in primary cilium dysfunction. Primary cilia are small non-motile organelles present on the surface of most vertebrate cells where they are involved in transduction of sensory, mechanical or chemical signals and in regulation of signalling pathways during development and cell homeostasis. Typical clinical presentations of ciliopathies include neurological involvement, retinal degeneration and renal fibrocystic disease, as illustrated by Joubert syndrome (JS), an iconic ciliopathy which is the main focus of our research. To understand the consequences of mutations in JS-associated genes at the molecular level, we combine observations from human genetics studies on JS-patients with modelling in the zebrafish system using state-of-the-art techniques such as crispr/Cas9 genome editing or live imaging of transgenically-tagged ciliary proteins.

Keywords: ciliopathies, primary cilia, Joubert syndrome, zebrafish

Topics: Development and Regeneration, Disorders of the nervous system

Website: http://www.medgen.uzh.ch/en/forschung/Research-Group-Bachmann-Gagescu.html

 

   
Brandeis

 

Prof. Dr. Daniel Brandeis 
Department of Child and Adolescent Psychiatry, University of Zurich, University of Zurich
brandeis@kjpd.uzh.ch

Research Focus: We focus on mapping brain functions and plasticity in typical development, neurodevelopmental disorders, and treatment with electrical and multimodal imaging (EEG-fMRI, MRS, with S. Brem). Clinical projects cover longitudinal brain mapping in common neurodevelopmental disorders like Attention-Deficit/Hyperactivity Disorder (ADHD), aggression and Dyslexia. We characterize timing, localization and genetics (with E.  Grünblatt) of compromised networks as endophenotypes as state dependent deficits during rest, attention, inhibition, reward processing, or print tuning etc.  For clinical translation we focus on neurofeedback and biofeedback training (with R. Drechsler), and evaluate potential biomarkers using multimodal approaches.

Keywords: ADHD, dyslexia, OCD, conduct disorder, development, plasticity, functional brain mapping, EEG, ERP, fMRI, MRS,  neurofeedback, biofeedback, longitudinal studies, reading, attention, genetics, gene x environment interactions.

Topics: Disorders of the Nervous System, Development and Regeneration, Cognitive Neuroscience, Biomedical Technology and Imaging

Publications: pubmed

Website: http://www.kjpd.uzh.ch/multimod/bm.html

 

   
Daum

test1

Prof. Dr. phil. Moritz M. Daum
Department of Psychology, Developmental Psychology: Infancy and Childhood, University of Zurich
daum@psychologie.uzh.ch

Research Focus: The overarching aim of the Research Group “Developmental Psychology” is to address the roots of infants’ and young children’s perception and understanding of their social world. The understanding of others as social agents is one of the most fundamental skills in our everyday social life. It is crucial for any engagement in cooperative and communicative activities. In our research, we are particularly interested in the mechanisms that form the bedrock of infants’ action perception, the interrelation of infants’ early action perception comprehension to the control of their own actions, the selective implementation of observed actions in one’s own actions.

Current projects focus on the (neuro-)cognitive processes underlying infants’ and young children’s action understanding, the interrelation of action understanding and action performance across the whole lifespan, the interrelation of language and action in development, and the development of the self.

Keywords: developmental psychology, infancy, life span, cognitive development, action perception language, imitation, eye tracking, EEG

Topics: Development and Regeneration, Neural Basis of Behavior, Cognitive Neuroscience

Publications: pubmed

Website: http://www.psychologie.uzh.ch/fachrichtungen/devpsy/personen

Lab: http://www.kleineweltentdecker.ch

 

   
Huber

 

Prof. Dr. Reto Huber
University Children’s Hospital Zurich and University Clinics for Child and Adolescent Psychiatry, University of Zurich
reto.huber@kispi.uzh.ch

Research Focus: Sleep wake regulatory mechanisms seem to be casually related to cortical plasticity. More specifically, wakefulness favours synaptic strengthening or synapse formation. On the other hand, sleep, in particular deep sleep, promotes synaptic weakening or synapse elimination, ensuring synaptic homeostasis. Cortical plasticity plays a key role for brain maturation. A large body of evidence indicates that aberrations in the trajectory of cortical plasticity are linked to the development of psychiatric disorders. We investigate mechanism underlying the interplay between sleep and wakefulness and how such mechanisms may impact the remodelling of cortical circuits during development and therefore might be related to the susceptibility of psychopathology.

Keywords: sleep regulation, cortical maturation, synaptic plasticity, high-density EEG, MRI, closed-loop stimulation

Topics: Sleep and Sleep Disorders, Development

Projects: http://www.research-projects.uzh.ch/a529.htm

Publications: http://www.kispi.uzh.ch/fzk/de

Websites:  www.kispi.uzh.ch/sleep    http://www.kjpd.uzh.ch/multimod/sleep.html

 

   
Jessberger

test1

Prof. Dr. Sebastian Jessberger
Brain Research Institute, University of Zurich
jessberger@hifo.uzh.ch

Research Focus: New neurons are continuously generated in two discrete areas of the adult brain – the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricles. Our group is interested in the underlying biology of adult neurogenesis, including the fate plasticity of adult neural stem cells (NSCs) and the molecular mechanisms governing stem cell activity and neuronal integration. Currently, we use gene expression profiling together with analyses of the metabolic state of NSCs and their progeny to study the molecular framework of NSC diversity in the adult brain and to identify novel regulators of the neurogenic process. In addition, our laboratory aims to understand how physiologic and disease-associated alterations of the neurogenic niche are translated into stem cell-associated plastic changes of the adult brain on a cellular but also behavioral level.

Keywords: Neural stem cells, hippocampus, ageing

Topic: Development and Regeneration

Publications: http://www.hifo.uzh.ch/research/jessberger/publications.html

Website: http://www.hifo.uzh.ch/research/jessberger.html

 

   
Karayannis

test1

Prof. Dr. Theofanis Karayannis
Brain Research Institute, University of Zurich

karayannis@hifo.uzh.ch

Research Focus: The brain begins to form during embryogenesis, but undergoes a protracted period of development that lasts into adulthood. Our work is aimed at understanding how the environment moulds the construction and reconfiguration of neuronal circuits to allow them to effectively process and respond to external stimuli throughout development. The goal is to unravel how the interplay between electrical activity and genetic programs controls the assembly and plasticity of cortical circuits that are involved in processing and gating sensory information. To achieve this, we utilize a multi-dimensional approach that includes molecular, genetic and functional methods. It is our hope that this research will not only provide insights into the making of the healthy brain, but also into neurodevelopmental brain pathologies resulting from aberrant circuit wiring.

Topics: Development and Regeneration, Sensory Systems, Disorders of the Nervous System, Molecular and Cellular Neuroscience, Neural Basis of Behavior

Website: http://www.hifo.uzh.ch/en/research/karayannis/karayannisPeople.html
 
   
Klaver

 

Prof. Dr. Peter Klaver
School of Psychology, University of Surrey, and Center for MR Research, University Children's Hospital Zurich
p.klaver@surrey.ac.uk, peter.klaver@uzh.ch

Research Focus: How do humans acquire knowledge about the world? Answering this question is central for the understanding and promoting of a child‘s achievement at school and further academic and work career. Within this field of research my focus lies on the study of the neural underpinnings of learning, memory and higher visual cognition. Specifically, I aim at unraveling how two dominant neural systems, the ventral and dorsal visual system support learning and memory. I pursue the hypothesis that both visual systems independently support learning and memory. The ventral system largely supports episodic memory formation and is primarily influenced by bottom-up processing, the dorsal system supports working memory processing and episodic memory retrieval and is under influence of top-down mechanisms. I am highly interested in how these systems work together, how they develop and what happens when parts of the systems are disrupted due to developmental disorders. Here, the hippocampus is an interesting target brain region for investigation, as it is vulnerable for early developmental disorders, it has a unique developmental trajectory and interacts with both dorsal and ventral visual streams.

Keywords: learning, memory, higher visual cognition, cognitive development, neurodevelopmental disorders

Topics: cognitive neuroscience, development and regeneration, disorders of the nervous system

Projects:
- The impact of maternal iodine deficiency on human brain and cognitive development
- Common neural mechanisms of episodic memory and working memory in typical and atypical development
- Linking the major system markers for typical and atypical brain development: a multimodal imaging study

Publications: https://www.surrey.ac.uk/psychology/people/peter_klaver/#publications

Website: https://www.surrey.ac.uk/psychology/people/peter_klaver/

 

   
Langer

 

Prof. Dr. Nicolas Langer
Methods of Plasticity Research, Department of Psychology, University of Zurich
n.langer@psychologie.uzh.ch

Research Focus: Our lab develops and obtains new neurophysiological and neuroimaging measures in the context of human brain and behavioral plasticity. Specifically, we investigate the potential for plasticity, mechanisms for stabilization and compensation across the lifespan. In particular, we investigate the relationship between brain plasticity and cognitive functioning, such as perceptual processing, learning, (working-) memory, decision-making and processing speed.
In this context of neuroplasticity research, we are designing and implementing novel multi-modal paradigms (e.g. combined EEG eye-tracking), extracting and associate them with state of the art neuroscientific methods, such as functional network models, machine learning, longitudinal analyses and computational modeling. These paradigms can also be used to decompose the critical component processes underlying performance of the behavioral tests that are used routinely in clinical diagnosis. This multi-level, multi-modal design allows us to study cognitive performance and perception at their desired level of analysis, and to elucidate variations in performance across the continuum from healthy to pathological functioning. To investigate those research aims and objectives, we are using a variety of psychological and neuroscientific methods, such as EEG, eye-tracking, structural MRI & DTI, psychophysiology)
Keywords: EEG, eye-tracking, cognitive modeling, machine-learning, cognition, multi-modal imaging, structural MRI, DTI, development, neurophenotyping, Research Domain Criteria (RDoC).

Topics: Cognitive Neuroscience, Computation and Modeling, Neural Basis of Behavior, Development and Regeneration

Publications: http://www.ncbi.nlm.nih.gov/pubmed/?term=Nicolas+Langer 

https://scholar.google.ch/citations?user=MElLotMAAAAJ&hl=en

Website: http://www.psychologie.uzh.ch/de/fachrichtungen/plafor.html

 

   
Pfaltz

 

Prof. Dr. phil. Monique Pfaltz

Department of Psychiatry and Psychotherapy, University Hospital Zurich

monique.pfaltz@usz.ch

Research Focus: Our research group specialises in peripheral physiology associated with emotion processing and the respective data collection and analysis methods. We are using ambulatory approaches as well as experimental laboratory research, including eye tracking analysis of video recordings to better understand emotion recognition, facial mimicry, emotion regulation, emotional reactivity and their biological foundations in clinical populations (e.g. borderline personality disorder, posttraumatic stress disorder) as well as the general population. A special focus lies on childhood and adult trauma related symptoms and their impact on emotional and social functioning.

Keywords: peripheral physiology, emotion processing, posttraumatic stress, ambulatory assessment strategies

Topics: Cognitive Neuroscience; Neural Basis of Behavior; Development and Regeneration

Publications: pubmed

 

   
Schneider Gasser

test1

Dr. Edith M. Schneider Gasser, Junior Group Leader
Institute of Pharmacology and Toxicology, University of Zürich
edith.schneidergasser@uzh.ch

Research Focus: We are investigating the involvement of cerebral erythropoietin (Epo) in brain maturation and its neuroprotective role in premature brain injury.

Our current research focuses on understanding how Epo influences brain energy metabolism and the interactions between blood vessels, astrocytes and neurons. We are also investigating the protective role of Epo in models of hypoxia induced brain injury and epilepsy.

Keywords: Erythropoietin, hypoxia, epilepsy, neuroprotection, hippocampus, interneurons, brain metabolism

Topic: Development and Regeneration, Disorders of the Nervous System

Publications: pubmed

Websites:http://www.pharma.uzh.ch/research/

http://www.vetphys.uzh.ch/research.html

 

   
Schwab

test1

Prof. Dr. Martin E. Schwab
Laboratory of Neural Regeneration and Repair, Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology (D-HEST), ETH Zurich
schwab@hifo.uzh.ch
Research Focus: Growth and regeneration of nerve fibers are influenced by growth promoting or growth inhibiting signaling molecules. Our group discovered the existence of myelin-associated growth inhibitors in the adult CNS and characterized an important nerve growth inhibiting membrane protein, Nogo-A. The in vivo application of anti-Nogo-A antibodies after spinal cord or brain trauma in rats or monkeys leads to outgrowth and regeneration of injured and uninjured nerve fibers and to a high degree of functional recovery. Clinical trials in spinal cord injured patients are currently on-going.

The laboratory also analyses the functional roles of Nogo-A as a stabilizer of the CNS circuitry and of synapses, including processes of memory formation. On the cell biological level, we analyse the multi-subunit composition of Nogo-A receptors and their relation to the specific effects of Nogo-A on the neuronal cytoskeleton and gene transcription.

Keywords: Nogo-A, nerve fiber growth, regeneration, plasticity, spinal cord and brain injury, myelin, neurite growth inhibitory activity, rehabilitation

Topics: Disorders of the Nervous System, Development and Regeneration, Molecular and Cellular Neuroscience

Publications: pubmed

Website: http://www.hifo.uzh.ch/research/schwab.html

 

   
Sommer

test1

Prof. Dr. Lukas Sommer
Institute of Anatomy, Division of Stem Cell Biology, University of Zurich
lukas.sommer@anatom.uzh.ch

Research Focus: Using genetic approaches in mouse model systems combined with cell biological assays, we are investigating how self-renewal and lineage-specific differentiation are controlled in vertebrate stem cells. Our favourite research topic are neural crest stem cells, which have a very broad developmental potential and give rise to multiple tissues in our body, including most of the peripheral nervous system, craniofacial bone and cartilage, smooth muscle in the outflow tract of the heart, and melanocytes in the skin. Our research aims to identify mechanisms underlying neural crest stem cell development associated with congenital diseases, tissue regeneration, and tumor formation.

Keywords: stem cells, embryonic development, developmental disorders, cancer

Topic: Development; Molecular and Cellular Neuroscience

Publications: pubmed

Website: http://www.anatom.uzh.ch/research/DivisionSommer_en.html

 

   
Stoeckli